
ON THE STABILITY OF THE TRIANWLAR LIBRATION 

POINTS IN THE CIRCULAR BOUNDED THREE-BODY PROBLEM 
PMM Vol. 33, No. 1, 1969, pp. 112-116 

A. P. MARKEEV 
(Moscow) 

(Received July 26, 1968) 

The results of a study of the stability of the equilibrium position of an autonomous 
Hamiltonian system with two de 

i% 
ees of freedom are presented, It is shown that the 

triangular libration points are sta le in the first approximation for all ratios of the 
masses in the stability range, with the exception of certain specific ratios for which 
they are unstable. 

1. In 1’772 Lagran e I’] showed that the differential equations of motion of the 
three-body roblem 
points: the #lr F 

ave a particular solution corresponding to the triangular libration 
ee bodies form an equilateral triangle which rotates in its plane about the 

center of mass of the bodies. 
In the bounded circular problem two bodies (the body S 
J of mass 

of mass ml and the body 
m,) move along circular orbits about their common center of mass 0 

with the constant angular velocity n. The third body moves in the plane OSJ with- 
out affecting the motion of the bodies 8, and J. 

We know [s-h] that for (mr +.ms)’ > 27m,m, the triangular libration points in 
the bounded circular three-body problem are stable in the first approximation. Makink 
use of the results of [sf, Leontovich shows [sf that the libration points are stable for 
all m,, m, in the range (m, + m,)’ > 27 m,m, with the possible exceptlon of 
a set of zero Lebesgue measure. In [r] me theorem of Arnol’d on the stability of the 
equilibrium position of an autonomous Hamiltonian system with two degrees of freedom 
f*] is used to show that the libration points are stable for all mass ratios ml / m, in 

the range (ml + %)’ > 27mlm, with the possible exception of three ratios for which 
the Arnol’d theorem does not hold. 

We shall solve the problem of stability of the triangular libration points for all mass 
ratios satisfying the condftion of stability In the first approximation. 

2. Let ns consider the stability of the equilibrium position of a canonical system with 
two degrees of freedom. 

1 OS Let the origin be the equilibrium position of the system 

dpi azs dq, aH 
dl =--q’ dt=q- (i=l, 2) (2.1) 

Here N is a Hamiltonian which is independent of t, analytic in gr, p, and can be 
expanded in a series 

H =H, +-Ha fH, f . ..fHI f... (2.2) 

where H, 3 a homogeneous function of degree k in g,, p,, 
If H, is a function of fixed sign, then the equilibrium position is stable by virtue of 

the Liapunov theorem Is] . On the other hand, if H3 is not a function of fixed sign, 
then stability can be investigated by means of the Arnol’d theorem [*I. Let Hamiltonian 
(2.2) satisfy the three following conditions: 
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1) the characteristic equation of the linearized system has the purely imaginary roots 

f &, f f@a; 
2) the frequencies ter, 0s. satisfy the inequalities 

where kl and ks are integers 
3) the inequality 

Cao%’ + Cll"l% + w4 # 0 (2.4) 

is fulfilled. 
Fulfillment of these conditions ensures the stability of the equilibrium position. 
The formulation of the theorem assumes that Hamiltonian (2.2) has been reduced to 

the form 

Such a reduction is possible Ix01 if condition (2.3) is fulfilled. 
For complete investigation of the problem of stability of the equilibrium position of 

system (2.1) we must consider the cases in which condrtions (2.3) or (2.4) are not ful- 
filled. Let al> ori. Inequalities (2.3) are then violated for o, = 20s and os z 
= 30,. Stability in these resonance cases is investigated ln [lr]. We shall now cite 
the basic results necessary for our subsequent investigation. 

2”. With suitable choice of the variables Q1, pi in the case o, = 2 ws Hamilto- 
nian (2.2) becomes 

Here 21001, Yisos are constants which depend on the coefficients of the forms Hs 
and Ha in expansion (2.2). and 

p* = ~z;;cosq+ (i = 1.2) (2.7) 

If z10019 + yiass4 # 0, then the equilibrium position is unstable. 

3”. For or = 30, the Wamiltonian can be reduced to the form 

HF= 3wgl-- oora + ca0r1* +CII~I~P +Qah'+ 

.+- '/soa y-3 (s,& + y&J Fp f%sin (VI f %a) i- 0 ((r~ -k dvD) (2s8) 

The corntans %, %I, %2. %OOW %30~ in (2.8) depend on the coefficients of the 
forms Ha, H,, H,.. The equilibrium posidon is instable if the inequalities 

are fulfilled. 
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4’. Now let us consider the stability of the equilibrium position when condition 
(2.4) is not fulfilled. 

If Ws -I- k;% # 0 f 

lkll +1wem 

or integers k, and ks which satisfy the condition 0 < 
then an analytical canonical substitution of variables allows 

us to reduce [lo] Hamiltonian (2.2) to the form 

m 

H = o,r, - w3 + x c,jrl*hj+ H*@l, Gr qp1, cpt) 
t+j=s 

(P = 0 ((Q + rs)m+“? (2.9) 

where rl, ‘pr can be determined from formulas (2. ‘7), and the function H* has the 
period 2rt in ‘pl and Cps. 

The coefficients cif are the invariants of Hamiltonian (2.2) relative to canonical 
~a~forrna~o~. Let us consider the polynomial 

h(8) S i Cp~h~i8i+j (2.10) 
i+ j-4 

If h (8) + 0, th en we say that the general elliptic case holds. In the Arnol’d the- 
orem the inequality k (a) * 0 arises from me coefficient of 8% in polynomial 
(2.10). If this coefficient is equal to zero, i.e. if condition (2.4) is not fulfilled, 
then coefficients of higher powers of e in polynomial (2.10) must be obtained. Requi- 
rements concerning the absence of resonance more rigid than (2.3) must then be impo- 
sed on o1 and os . 

The first nonzero coefficient of polynomial (2.10) is that of em. The following the- 
orem is then valid. 

Theorem 2.1. Let Hamiltonian (2.2) satisfy me following conditions: 
1) the characteristic equation of the system with the Hamiltonran H, has the purely 

imaginary roars f iOr, f kes; 
2) the frequencies Or and 0s satisfy the inequalities 

3) the inequality 

is fulfilled. 
The equilibrium position is then stable. 
Let us outline the proof of this Theorem. The first step is to reduce Hamiltonian 

(2.2) to the form (2.9), and, using the integral H - const, to reduce system (2.1) 
to a system with one degree of freedom j‘]. Applying Moser’s theorem on invariant 
curves (Is] to the mapping generated by the resulting Hamiltonian system of differen- 
tial equations [‘*jr we can show that fulfillment of the above theorem at each level 
H = const in any neighborhood of the origin ensures the existence of rwo-dimemio- 

nal invariant tori of system (2.1). This implies the stability of the equilibrium posi- 
don. Similar applications of Moser’s theorem to dynamics problems can be found, 
for example, in [i’ i6J. 
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3. Let us prove the following theorem on the stability of the libration points. 

Theorem 3.1. The triangular libration points are stable for all ratios of the 
masses in the range (ml + m&s > 27m,m, except for the ratios 

ml= 643+ 15 Vi833 ml 
32 t -= 73 + 5 Jf23 

ml ma 2 

for which they are unstable. 
Let us introduce a coordinate system which rotates with the angular velocity A , 

whose origin coincides with the center of mass 0 of the bodies S and J, and whose 
a--axis coincides with the straight Line OJ. Denoting the coordinates of the point P 
in this system by PO, y and the projections on the axes t, y of the velocity of P rela- 
tive to the fixed coordinate system by II; v we can write the Hamiltonian of the prob- 
lem in the form I’] 

H=_S (a” $ a*) + n (uy - uz) - 3 - F; (3.4) 

Let us denote the length of Sf by I . Then, as we know, n’l* = m, + m,, and 
the solution corresponding to the triangular libration point for the system of equations 
with Hamiltonian (3.1) is the equilibrmm position 141 

z==a, y= b+ II = - nb, u = nu (3.21 

where 

ml-ma I 
a=m~+T* 

b ?% 

x-1 
2, 

On substituting variables according to the expressions 

t = a f gr1, Y = b i- q,l, u=;- nb i- plnl, u = no + p,nl, ‘c - nt 

we can write the solution under investigation as 91 = Pn = pt = p, = u. 
Expanding Hamiltonian (3.1) in the neighborhood of the origin 91 =-qs = p1 i=l 

= pI c: 0 in a series in powers of ~1, pr, we obtain 

H=H,+Hs+H~+...+Hc+... (3.3) 

Ha= '12F~2-t '12 J?? + BPFI - cl@2 + 'L/s 912- k9192-afe qsa 

&= 
23 

‘Jff?k 
265 215 345 

576 qlo- v/a q149s-- fTk 41W + 7/F QlW + 256 263 128 

555 Y’Fk 33 v’u 
-t- W3r4 - ox’ 576 256 

35k 7965 
- T Px'9,'- 1024 91w- 

(3.4) 

119k 383 
- 128 Q191b + 1024 (13 

k = 3 I/b(ml - m31 h(mt+ mi) 



On the stability of the triangular libration points 109 

We have omitted the constant term in (3.3). The condition of stability in the first 
approximation can be written in the form of inequalities, 

(3.5) 

The frequencies of the oscillating system with the Hamiltonian satisfy the equation 

0’ - (11’ + ('7/l,, - k’) = 0 (3.6) 

We can assume that o1 > o2 > 0. in range (3.5). 
BY making use of the Arnol’d theorem we can verify that the equilibrium position 

91 = 91 - Pl = p, = 0 is stable in the range (3.5) except possibly in those cases 
where one of the equations 

is fulfilled. 
Computations show that 

2VT 01=2*=5 611 
for k’= 400 

( 

mr 643+15 r/i833 
mt = 32 .> 

w=h= 3J% for 

639 

k’= ( ml 

73 

+ 

5 

V/2X 10 400 
-= m, 2 > 

Q&s*+ c1101or+cw~=0 for k* = i 6146 (ml / ma = S&6282) 

The Arnol’d theorem is inapplicable for the three indicated mass ratios. Let us 
make use of the results of Sect. 2 to complete our solution of the stability problem. 

For 0, = 20, Hamiltonian (3.3) is reducible to the form (2.6). where 

+,s’ + yloor’ = 4.108 # 0 

The equilibrium position is unstable. 
For o1 = 30, the Hamiltonian is reducible to the form (2.8). In this case 

~u+T,& + y& = 23.2826, ~cn,+3cll+9c~~= 4.1705 

and the equilibrium position is also unstable. 
Now let us consider the ratio ml / m, = SO.6282 when condition (2.4) of the Amol’d 

theorem is not fulfilled. Computations show that for Hamiltonian (3.3) reduced to the 
form (2.9) we have 

01 = 0.9596, os = 0.2813, = 0.0978, cl1 = - 1.3892, c, = 0.3988 
QO = - 0.2193, es1 = 7.7%2, cr, = - 209.9311, c,, = - 14.5289 

Verifying inequalities (2.11) and (2.12) for m = 3, we find that 

Ol# %, q# 2% 01 + 3% 01 # 4% (*I# 5% 20, # 30, 
es& + es,os’o, +‘c,,yo,’ + co,o,s = - 66.6312 # 0 

All of the conditions of Theorem 2.1 are fulfilled, and the equilibrium position is 
stable. 

The author is grateful to V.A. Sarychev for his interest in the present study. 
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The general problem of motion about a fixed point 0, of a rigid body with a cavity 
partially or totally filled with a viscous Incompressible fluid. under the action of gra- 
vi 

7 
is studied here in its linearized approximation. Surface tension is neglected. 

or rhe case of motion about the center of mass when the cavity is completely filled, 
this problem was considered in (‘1. The general problem when the fluid viscosity is 
assumed to be small was considered in the paper of F. L. Chernous’ko [a). 

1. Bqurtfonr of motion of the fluid. We denote by $2 theregiontin 
a moving coordinate system &r~yz rigidly attached to the body) which Is filled with 
the undisturbed fluid. We denote by l”, the undisturbed free surface of the fluid, and 
by r1 that part of rhe wall of the cavity in contact with the fluid. In the linearized 
approximation to the Navier-Stokes equations, rhe fluid motion is described in the 
Olzyz system by 


