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The results of a study of the stability of the equilibrium position of an autonomous
Hamiltonian system with two de%ees of freedom are presented, It is shown that the
triangular libration points are stable in the first approximation for all ratios of the
masses in the stability range, with the exception of certain specific ratios for which
they are unstable.

1. m 1172 Lagranﬁe [1] showed that the differential equations of motion of the
three-body problem have a particular solution corresponding to the triangular libration
points: the three bodies form an equilateral triangle which rotates in i plane about the
center of mass of the bodies,

in the bounded circular problem two bodies (the body .§ of mass m; and the body

J of mass mg) move along circular orbits about their common center of mass O
with the constant angular velocity n. The third body moves in the plane OSJ with-
out affecting the motion of the bodies S, and J,

We know [#-4] that for (m, +--m,)? > 27m,my the wiangular libration points in
the bounded circular three~body problem are stable in the first approximation, Makiny
use of the results of [¢] Leontovich shows [*] that the libration points are stable for
all my, my in the range (m; -+ my)® > 27 mym,; with the passible exception of
a set of zero Lebesgue measure, In [?] the theorem of Arnol'd on the stability of the
equilibrium peosition of an autonomous Hamiltonian system with two degrees of freedom

{8] is used to show that the libration points are stable for all mass ratios m, / my in
the range (my -+ m;)* > 27m;m, with the possible exception of three ratios for which

the Arnol'd theorem does not hold.
We shall solve the problem of stability of the triangular libration points for all mass
ratios satisfying the condition of stability in the first approximaton,

2. Let us consider the stability of the equilibrium position of a canonical system with
two degrees of freedom,

1°, Let the origin be the equilibrium position of the system

dp, oH dgy  oH ,
71—-_.-—-5;‘—’ -—dt—-——-—a-;‘— (121,2) (2.1)

Here J{ is a Hamiltonian which is independent of ¢, analytic in g, P, and can be
expanded in a series

H=H +Hy +Hy 4 ...-Hj\ + ... (2.2)

where M, .s a homogeneous function of degree k in g, p,.

If H, is a function of fixed sign, then the equilibrium position is stable by virtue of
the Liapunov theorem [?]. On the other hand, if M, is not a function of fixed sign,
then stability can be investigated by means of the Arnol'd theorem [$8], Let Hamiltonian
(2.2) satisfy the three following conditions:

105



106 A. P, Markeev

1) the characteristic equation of the linearized system has the purely imaginary roots

+ oy, + loy;
2) the frequencies w,, w, satisfy the inequalities

hy@; + kyng 5=0 for 0kl + ksS4 (2.3)

where Ky and k; are integers
3) the inequality

Cao®s’ + €1 0y0; + Cup*y 50 (2.4

is fulfilled,
Fulfiliment of these conditions ensures the stability of the equilibrium position.
The formulation of the theorem assumes that Hamiltonian (2.2) has been reduced w0

the form

H= o,ry — g7y + C3oT1 2+ 017173 + Coara® + O ((r, + re)¥s),@2ri=p2 + 4% (2.5)

Such a reduction is possible [*°} if condition (2. 3) is fulfilled.
For complete investigation of the problem of stability of the equilibrium position of
system (2. 1) we must consider the cases in which conditions (2. 3) or (2.4) are not ful-

filled, Let ®; > ,. Inequalities (2.3) are then violated for ©; = 20, and ®; =
= 3w,. Stability in these resonance cases is investigated in [11], We shall now cite
the basic results necessary for our subsequent investigation,

2°, With suitable choice of the variables ¢,, pi in the case @, = 2 w, Hamilto-
nian (2,2) becomes

H=2w0yry — agry— V(@ g8, + ¥,,3,) 037 V71 5in (914295) + O ((r1+ ra)?) (2.6)

Here Zy002v Y1002 are constants which depend on the coefficients of the forms H,
and H, in expansion (2.2), and
g,= V2r;sing, p, = V2rjcosq, (i =1.2) (2.7)
If Zy00e® + ¥1002> 5= O, then the equilibrium position is unstable.

3°, For @, = 3w, the Hamiltonian can be reduced to the form

H == 3wqry — 0gry + Caof1® + Cuar1?s + Coals® +
+ Y503 V3@ 2 F i) ra Vrarasin (@1 + 39a) + 0 (r +ra)e) - (28)

The constants €goy €110 Co2r Zrcosr Hir003 in (2.8) depend on the coefficients of the
forms H,, H,, H,. The equilibrium position is instable if the inequalities

z,3 + Y F0 3wy mezs + ¥y > |20 + Benn + 9caa |

are fulfilled,
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4°, Now let us consider the stability of the equilibrium position when condition
(2.4) is not fulfilled,
1f F10; + Jy@y == 0 for integers k, and ky which satisfy the condition 0 <<
ky] 4 |ks| << 2m, then an analytical canonical substitution of variables allows
us to reduce [10] Hamiltonian (2.2) to the form

m
H = oyry — wgry + 2 ciiratral + H* (ry, 74, 91, Py)
+j=2

(H* =0 ((rn+ )™ (2.9)

where r;, @4 can be determined from formulas (2.7), and the function H* has the
period 2 in @y and 9s.

The coefficients ¢y are the invariants of Hamiltonian (2.2) relative to canonical
transformations. Let us consider the polynomial

m

h(s) = 2 cijofoytetts (2.10)

{4 jma

If h (e) 5= 0, then we say that the general elliptic case holds. Inthe Arnol'd the~
orem the inequality 4 (8) 5= 0 arises from the coefficient of €? in polynomial
(2.10), If this coefficient is equal to zero, i.e. if condition (2.4) is not fulfilled,
then coefficients of higher powers of & in polynomial (2,10) must be obtained. Requi-
rements concerning the absence of resonance more rigid than (2. 3) must then be impo-
sed on @y and ©, .

The first nonzero coefficient of polynomial (2. 10) is that of &™. The following the-
orem is then valid.

Theorem 2.1, Let Hamiltonian (2,2) satisfy the following conditions:

1) the characteristic equation of the system with the Hamiltonian /, has the purely
imaginary roots + iwy, + iwy;

2) the frequencies @y and @y satisfy the inequalities

kyoy - kawe =0 for 0| ke|+ | ko] <2m (2.11)
3) the inequality

m
;§ Coned, 101 '0y™ 4 = 0 (2.12)

is fulfilled.
The equilibrium position is then stable,
Let us outline the proof of this Theorem. The first step is to reduce Hamiltonian

(2.2) to the form (2. 9), and, using the integral H = const, to reduce system (2.1)
to a system with one degree of freedom -[¢], Applying Moser's theorem on invariant
curves {] to the mapping generated by the resulting Hamiltonian system of differen=
dal equations {13}, we can show that fulfillment of the above theorem at each level

H = const in any neighborhood of the origin ensures the existence of two~dimensio-
nal invariant tori of system (2.1). This implies the stability of the equilibrium posi-
tion. Similar applications of Moser’s theorem to dynamics problems can be found,

for example, in [1¢ 8],
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3. Let us prove the following theorem on the stability of the libration points,

Theorem 3.1. The wiangular libration points are stable for all ratios of the
masses in the range (my + m2)3 > 27mym, except for the ratios

— T e —— e ————

my 32 ' ms 2

for which they are unstable,
Let us introeduce a coordinate system which rotates with the angular velocity n ,

whose origin coincides with the center of mass @ of the bodies § and J, and whose
w=axis coincides with the straight line @J. Denoting the coordinates of the point P
in this system by #, y and the projections on the axes z, y of the velocity of P rela~

tive to the fixed coordinate system by u, v we can write the Hamiltonian of the prob-
lem in the form [4]

1 m m
H=5 (4% +n(uy—vz) —5p — Tp 34

Let us denote the length of S/ by ! . Then, as we know, n3® = m, -+ m,, and

the solution corresponding to the triangular libration point for the system of equations
with Hamiltonian (3.1) is the equilibrium position (¢}

z=a, y=21b = — nb, v = ne6 {3.2)
where
.._m____._‘—m’i b .}/._-3-[
a_m1+mg 2" = ’

On substituting variables according to the expressions
ze a4 ql, y=0b+ gl = — nb+4 pnl, v=na- pnl, t=nt

we can write the solution under investigationas ¢1 = ¢ = p; = p, = U.
Expanding Hamiltonian (3. 1) in the neighborhood of the origin ¢ =.¢y = p, =
= py = @ in a series in powers of ¢;, Py, We obtain
H=H3+Ha-{‘H‘+...+Hk+-.- (3-3)

Hy==1/; Px’j"/z P2+ q2pr— 1ps + Vs 91> — kqrga— /s gs?
7 V3 3V3 11 V3k 3V3

Hy==— 36 S 16 N + 12 ngs* + 16 gst
37 25k 123 15k 3

Hi=gmatt —57 0’0 — g7 0% — g q9® — 55 oo 3.49)

23 V3k 285 V'3 245 V'3k 345 V3
Hy="gg— o' — —g55  0'n—"ggg 0’0’ + Tpg ol +

555 V'3 k 33V3
+ g Nt — g o'
331 49k 6405 35k 7965
Hy=— ooz 0 + o5 00 + 13 0%0° — 55 0o’ — qoag et —
119 & 383

— 155" N9 + 7025 N°
k=3V3(m — my)/4(my+ my)
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We have omitted the constant term in (3.3), The condition of stability in the first
approximation can be written in the form of inequalities,

3/1e < k2 < V3¢ (3.5)
The frequencies of the oscillating system with the Hamiltonian satisfy the equation
0t — P+ (e — k) =0 (3.6)
We can assume that ©; > w; > 0. in range (3.5).
By making use of the Arnol'd theorem we can verify that the equilibrium position
@1 = ¢ = py = py = 0 is stable in the range (3. 5) except possibly in those cases
where one of the equations

0 = 20y, Oy = 305, €30, + ;0,0 + cu0* = 0

is fulfilled.
Computations show that

2 Vs 841 /m; 643 4+15 V1833

0 =20y=—5— for M=gm( =" """

3V 10 639 /m 7345V 23

0 = 3wy = 10 for k’=m—0(m—:=‘—i-2v—)
Caotdg? + €11010g | caw® = for k% =1.6146 (m, / my = 90.6282)

The Arnol'd theorem is inapplicable for the three indicated mass ratics, Let us
make use of the results of Sect. 2 to complete our solution of the stability problem.

For o, = 20, Hamiltonian (3. 3) is reducible to the form (2.6), where

zlm’ + ylm’ = 4.108 * 0

The equilibrium position is unstable.
For ®, = 3w, the Hamiltonian is reducible to the form (2.8), In this case

30s)/ ygly + Ypohy = 232828, [ a0 + Beus + Seoa | = 4.4705

and the equilibrium position is also unstable.
Now let us consider the ratio m, / my, = 90.6282 when condition (2. 4) of the Arnol'd

theorem is not fulfilled. Computations show that for Hamiltonian (3, 3) reduced to the
form (2.9) we have

o = 0.9596, @y = 0.2813, ¢y = 0.0978, ¢, = — 1.3892, c, = 0.3988
e = —0.2193, ¢, = 7.7942, ¢y = — 209.9311, cy = — 14.5289

Verifying inequalities (2.11) and (2.12) for m = 3, we find that

@) F @y, © F 20, 0 F 30, 0 F 40, © F 50, 20, F 30,
C30Ws® + €0, W30 ' 013050,% + o300, = — 66.6312 £ 0

All of the conditions of Theorem 2,1 are fulfilled, and the equilibrium position is
stable,
The author is grateful to V, A, Sarychev for his interest in the present study.
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The general problem of motion about a fixed point 0, of a rigid body with a cavity

partially or totally filled with a viscous incompressible fluid, under the action of gra-
vi? is studied here in it linearized approximation, Surface tension is neglected.
or the case of motion about the center of mass when the cavity is completely filled,

this problem was considered in [1}. The general problem when the fluid viscosity is
assumed to be small was considered in the paper of F, L, Chernous'ko {3},

1, Equations of motion of the fluid, We denow by & the region(in
a moving coordinate system Oxyz rigidly attached to the body) which is filled with
the undisturbed fluid, We denote by I'y the undisturbed free surface of the fluid, and
by I, that part of the wall of the cavity in contact with the fluid. In the linearized
approximation to the Navier-Stokes equations, the fluid motion is described in the

O,zyz system by



